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Critical statistics in quantum chaos and Calogero-Sutherland model at finite temperature

A. M. Garcı́a-Garcı´a and J. J. M. Verbaarschot
Department of Physics and Astronomy, SUNY, Stony Brook, New York, 11794

~Received 7 October 2002; published 11 April 2003!

We investigate the spectral properties of a generalized Gaussian orthogonal ensemble capable of describing
critical statistics. The joint distribution of eigenvalues of this model is expressed as the diagonal element of the
density matrix of a gas of particles governed by the Calogero-Sutherland~CS! Hamiltonian. Taking advantage
of the correspondence between CS particles and eigenvalues, and utilizing a recently conjectured expression by
Kravtsov and Tsvelik for the finite temperature density-density correlations of the CS model, we show that the
number variance of our random matrix model is asymptotically linear with a slope depending on the param-
eters of the model. Such linear behavior is a signature of critical statistics. This random matrix model may be
relevant for the description of spectral correlations of complex quantum systems with a self-similar or fractal
Poincare´ section of its classical counterpart. This is shown in detail for two examples: the anisotropic Kepler
problem and a kicked particle in a well potential. In both cases the number variance and theD3 statistic are
accurately described by our analytical results.
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I. INTRODUCTION

Random matrix ensembles~RME’s! are an invaluable too
in describing the level statistics of complex quantum s
tems. Typically, their range of applicability for disordere
systems is determined by the Thouless energy that, in
metallic phase, is much larger than the average level spac
In the neighborhood of a localization-delocalization tran
tion the Thouless energy is of the order of the average le
spacing and the wave functions become multifractal. T
usual random matrix ensembles are no longer applicable.
cently, new random matrix ensembles@1–8# depending on
additional parameters have been proposed to describe s
tral correlations in this critical case. These new models
critical statistics have been successfully utilized to desc
the spectral correlations of a disordered system at the An
son transition in three dimensions@9,10#, two dimensional
Dirac fermions in a random potential@11#, the quantum Hall
transition@12#, and of the QCD Dirac operator in a liquid o
instantons@13,7#.

There are two different types of models for critical stat
tics. In the first one, deviations from Wigner-Dyson statist
are obtained by adding a symmetry breaking term to
Gaussian unitary ensemble~GUE! @2,7#. The model is solved
by mapping it to a noninteracting Fermi gas of eigenvalu
The second one@4# makes use of soft confining potentia
and is solved exactly by means ofq-orthogonal polynomials.
Both models lead to the same spectral kernel for small
viations from the GUE. Based on this observation it w
conjectured@1# that critical statistics is universal. Howeve
the origin of the critical kernel is different in both cases.
models based on a soft confining potential the critical ker
is obtained from a nontrivial unfolding. In models with a
explicit symmetry breaking term, deviations from Wigne
Dyson statistics arise because the long range correlation
tween the eigenvalues are exponentially suppressed@14#. We
remark that the extent of universality in critical statistics
still under debate. For instance, for chiral ensembles,
correlation functions of a model based on a symmetry bre
ing term@7# and a model with a soft confining potential@15#
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are different. Only the former one reproduces critical sta
tics.

Critical random matrix models for orthogonal and sym
plectic ensembles have recently@16# been reported in the
literature. Tsvelik and Kravtsov have obtained asympto
expressions for the critical two level spectral function from
generalized ensemble of random banded matrices. An e
expression for the two level critical spectral function w
conjectured in Ref.@16# for orthogonal and symplectic en
sembles. In the context of the Anderson model, a sim
result was conjectured by Nishigaki@10#.

In order to describe the spectral correlations of cert
pseudointegrable billiards with dynamics intermediate
tween chaotic and integrable, Bogomolny and co-work
@17# have introduced a short range plasma model that in
polates between Poisson statistics and Wigner-Dyson st
tics. The joint distribution of eigenvalues in Ref.@17# is
given by the classical Dyson gas with the logarithmic pa
wise interaction restricted to a finite numberk of nearest
neighbors. Analytical solutions are available for generak
and symmetry class. It turns out that this short range plas
model reproduces the typical characteristics of critical sta
tics like a linear number variance, with a slope depending
k and, asymptotically, an exponential decay of the nea
neighbor spacing distribution. However, the two models
not identical. In critical random matrix models based on
symmetry breaking term, the joint distribution of eigenvalu
can be considered as an ensemble of free particles at fi
temperature with a nontrivial statistical interaction. The s
tistical interaction resembles the Vandermonde determin
and the effect of a finite temperature is to suppress the
relations of distant eigenvalues. In Ref.@17# this suppression
is abrupt, in contrast to critical statistics, where the effect
the temperature is smooth. For further details we refer to R
@14#.

In this paper we introduce a generalized Gaussian
thogonal ensemble~GOE! based on the addition of a sym
metry breaking term to an invariant Gaussian probability d
tribution along the lines of Ref.@2# for the GUE. We show
©2003 The American Physical Society04-1
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that the joint eigenvalue distribution of this model coincid
with the diagonal element of the density matrix of a gas
particles governed by the Calogero-Sutherland~CS! Hamil-
tonian. Using this identification we calculate the asympto
behavior of the number variance from the susceptibility
the CS partition function. Because the Itzykson-Zuber in
gral for b51 is unknown, a direct calculation of the corr
lation functions is not possible. To obtain analytical resu
we invoke the Kravtsov-Tsvelik conjecture, which states t
the finite temperature modifications of the correlation fun
tions arise only through the known finite temperature mo
fications of the kernel forb52. The validity of this conjec-
ture is tested in two different ways. First, we show that it
in agreement with a conformal calculation of the asympto
behavior of the two-point correlation function. Second, t
asymptotic behavior of the number variance according to
Kravtsov-Tsvelik conjecture agrees with the behavior of
susceptibility in the grand canonical ensemble. One of
main aims of this paper is to show that critical statist
describes the spectral correlations of time-reversal invar
quantum systems with a corresponding classical phase s
that has a global self-similar fractal structure. This is sho
in two examples, a kicked particle in a potential well and t
anisotropic Kepler problem, by comparing the two-po
level correlations with the analytical formula of our critic
random matrix model.

The critical random matrix model and its relations wi
the CS model are discussed in Sec. II. In Sec. III, we rev
the Kravtsov-Tsvelik conjecture for the density-density c
relation function of the CS model in the low temperatu
limit. The validity of this conjecture is discussed in Sec. I
In Sec. V we show that the level correlations of a kick
particle in a potential well and of the anisotropic Kepl
problem are described by the Kravtsov-Tsvelik conjectu
Concluding remarks are made in Sec. VI.

II. DEFINITION OF THE MODEL

A random matrix model for Hermitian matrices with crit
cal eigenvalue statistics was introduced in Ref.@2# by
Neuberger-Moshe-Shapiro. Although it is straightforward
generalize this model to the class of the Gaussian orthog
ensemble, the absence of an explicit result for the inte
over orthogonal matrices makes its analysis far more c
plicated. The model we study is defined by the joint pro
ability distribution

P~S,b!5E dMe2(1/2)Tr SST
e2(b/2)Tr[M ,S][ M ,S] T

. ~1!

Here, theN3N matricesS and M are real symmetric and
orthogonal, respectively, and the integration measuredM is
the Haar measure. From the invariance ofdM it follows that
P(S,b) is a function of the eigenvalues ofS only. If the
eigenvalues ofS are denoted byxk the joint eigenvalue dis-
tribution is given by
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r~x1 , . . . ,xN!5D~$xk%!E dM expS 2
1

2
~2b11!(

k
xk

2

1b(
k,l

Mkl
2 xkxl D , ~2!

where the Vandermonde determinant is defined by

D~$xk%!5)
k, l

~xk2xl !. ~3!

Let us now consider the harmonic oscillator Hamiltonian

Ĥ52¹S
21

1

4
v2Tr S2, ~4!

where the Laplacian for symmetric matricesS is given by

¹S
25(

i 51

N
]2

]Sii
2

1
1

2 (
i , j

N
]2

]Si j
2

. ~5!

This Hamiltonian is the sum ofN(N11)/2 independent har
monic oscillators with imaginary time propagator given
@18#

^Sue2tĤuS8&5S v

4p sinhvt D N(N11)/4

3e2(v/4 sinhvt)[(Tr S21Tr S82)coshvt22 Tr SS8] .

~6!

Since the Laplacian¹S
2 is the sum of a radial piece, depen

ing only on the eigenvalues ofS, and an angular piece, de
pending only on the orthogonal matrixMS that diagonalizes
S,

¹S
25

1

D~$xk%! (
i 51

N
]

]xi
D~$xk%!

]

]xi
1¹MS

2 , ~7!

the matrix element̂Sue2tĤuS8& factorizes into a radial piece
and an angular piece. After integration over the angular
grees of freedom and putting the eigenvalues ofS8 equal to
the eigenvalues ofS we obtain

^x1 , . . . ,xNuD1/2~$xk%!e2tHradD21/2~$xk%!ux1 , . . . ,xN&

5CE dMe2(v/2 sinhvt)[Tr S2coshvt2Tr SMSMT] , ~8!

where the integral over the angular matrix element has b
absorbed in the normalization constantC. If we make the
identification

v

sinhvt
52b and

v coshvt

sinhvt
52b11, ~9!

the right-hand side of this equation is exactly the joint pro
ability distribution ~2!. We thus have shown that the join
4-2
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probability distribution of our model is given by the diagon
matrix element of the density matrix of the Hamiltonian

Ĥ5D1/2~$xk%!H radD
21/2~$xk%!. ~10!

Using the identity,

D21/2~$xk%!(
i 51

N
]

]xi
D~$xk%!

]

]xi
D21/2~$xk%!

5(
i 51

N
]2

]xi
2

1
1

4 (
kÞ l

1

~xk2xl !
2

, ~11!

we find the Hamiltonian

Ĥ52(
j

]2

]xj
2

2
1

4 (
iÞ j

1

~xi2xj !
2

1
v2

4 (
j

xj
2 . ~12!

This Hamiltonian corresponds to the Calogero-Sutherl
model @19,20#

ĤCS52(
j

]2

]xj
2

1
l

2 S l

2
21D(

iÞ j

1

~xi2xj !
2

1
v2

4 (
j

xj
2 ,

~13!

with l51 and fermionic boundary conditions. We have th
shown that the joint eigenvalue distribution of the model~1!
is given by the diagonal matrix elements of theN-particle
density matrix of the Calogero-Sutherland model at an
verse temperaturet given by Eq.~9!. We mention that for
the special case ofl52 ~free fermions! a similar mapping
was found in the context ofq-orthogonal polynomials@21#.

The normalized eigenfunctions of the Caloger
Sutherland Hamiltonian~12! can be labeled in terms of th
partitions of integers denoted byk ~see the following sec-
tion!. If lk andCk(x1 , . . . ,xN ,v) are the eigenvalues an
eigenfunctions of the CS Hamiltonian, respectively, the jo
eigenvalue probability distribution is given by

r~x1 , . . . ,xN!5C8(
k

e2lktCk~x,v!Ck~x,v!, ~14!

where C8 is a constant andx5x1 , . . . ,xN . The Ck(x,v)
can be expressed in terms of the generalized Hermite p
nomials@22#

Ck~x,v!5
1

ANk

expS 2
1

4
v(

k
xk

2DD1/2~$xl%!Hk~xAv/2,2!,

~15!

whereNk is a normalization constant and the eigenvalue
given by

lk5vuku. ~16!
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We point out that the above relation between the Euclid
propagator in symmetric spaces and the CS model at fi
temperature can be extended to all nine other symm
classes in the Cartan classification of large families of sy
metric spaces@23#. In essence, the radial part of the Lapla
ian in the symmetric space corresponds to a CS type Ha
tonian. For a classification of CS Hamiltonians based on
symmetry class we refer to Ref.@24#.

Finally, let us mention that the interpolating role~between
RME and the Poisson ensemble! of b can be inferred directly
from Eq. ~1!. Using the invariance of the measure, the in
gral overM can be replaced by an integral over the eige
values ofM. For b→`, this partition function is dominated
by matricesS that commute with arbitrary diagonal orthogo
nal matrices. This set of matrices is the ensemble of diago
symmetric matrices also known as the Poisson ensem
with uncorrelated eigenvalues. Critical statistics is obtain
in the thermodynamic limit if the parameterb is scaled as

b5h2N2. ~17!

Wigner-Dyson statistics is found for a weakerN dependence
of b whereas a strongerN-dependence leads to Poisson s
tistics. This transition can also be understood in terms of
CS model at finite temperature. At zero temperature,
probability density of the ground state of the CS model~12!
coincides with the joint probability distribution of the Gaus
ian orthogonal ensemble. In the high temperature limitt
→0, the positions of the particles become uncorrelated
the statistics of the associated matrix model is Poisson.

To recapitulate, we have traded the problem of perform
an integral over the orthogonal group by the physical task
finding the diagonal element of the density matrix of an e
semble of particles governed by the CS Hamiltonian.

Excited states and zonal polynomials

In this section we discuss explicit solutions of the excit
eigenfunctions of the CS Hamiltonian~12! and argue to what
extent they are useful for the evaluation of correlation fun
tions from the joint eigenvalue distribution~2!.

The probability density of the ground state of the C
model ~12! coincides with the joint probability distribution
of the Gaussian orthogonal ensemble@19#. This observation
together with the conjecture of the solvability of the C
model was already made in the pioneering papers of Ca
ero @20# and Sutherland@19#. Later, Sutherland@25# obtained
a nonorthogonal set of solutions. The problem of finding
set of orthogonal solutions for these excited states was
cently solved by Forrester, Ha, and Serban@26–28# who ex-
pressed the wave functions of the excited states in term
the symmetric Jack polynomials@29#. For the special values
of the coupling constant related to the GOE and the GSE
Jack polynomials have a geometrical interpretation and
usually called zonal polynomials@30#. Unfortunately, there is
4-3
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no closed formula either for the Jack or for the zonal po
nomials @30#. Since explicit calculations rely on recurrenc
relations, numerical work is needed to evaluate polynom
of high degree. In our case, due to the harmonic poten
the excited states are given by the generalized Hermite~or
as

u

la

n
th
n
he
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Hidden-Jack! polynomials @31# that can be expressed i
terms of Jack polynomials@31,22#.

The generalized Hermite polynomials in Eq.~14! can
be expressed in terms of zonal polynomials by means o
Mehler type formula@22#.
r~x1 , . . . ,xN!}expS 2
1

2
v(

k
xk

2DD~$xk%!(
k

e2lkt

Nk
Hk~xAv/2,2!Hk~xAv/2,2!

}D~$xk%!expS 2
1

2
v coth~tv!(

i
xi

2D(
k

1

uku!
Ck

(2)~xA2v/A12e22vt!Ck
(2)~xAv/2e2tv/A12e22vt!

Ck
(2)~1N!

,

~18!
red
on
fails
tion

for
als
for

el
la-

CS
where theCk
(2)(x) are the symmetric Jack polynomials

defined in Ref.@22#, x5x1 , . . . ,xN and k labels the parti-
tions of the integers~there is a polynomial for each partition!
and the sum runs over all the partitions. Furthermore,t and
v are related tob through Eq.~9!.

The kernel

F0~x,y![(
k

1

uku!
Ck

(2)~2x!Ck
(2)~y!

Ck
(2)~1N!

~19!

has been studied extensively@30,22#. Using the result for the
t→0 limit of the kernel@22#,

F0~x/At,y/At!}
1

AD~$xk%!D~$yk%!
)
j 51

N

etxj yj /2 ~20!

one easily shows that the eigenvalues of our model are
correlated in the high temperature limit.

In the zero temperature limit~GOE!, the joint distribution
can be represented as a quaternionic determinant and
integrations can be performed by means of a ‘‘kernel re
tion.’’ At nonzero temperatures, the kernelF0(x,y) satisfies
the ‘‘kernel relation’’@22#,

E dm~y!F0~2y,z!F0~2y,x!

}F0~2z,x!expS 2
1

2
v(

i
~zi

21xi
2! D , ~21!

where dm(y)5) i 51
N e2(v/2)yi

2
D($yk%)dy1 , . . . ,dyN , but it

is not known1 whether the joint eigenvalue distribution ca
be expressed in terms of quaternionic determinants. Fur
progress could rely on exploiting the orthogonality relatio
@30# verified by the zonal polynomials. If proceeding so, t
partition function associated with Eq.~1! can be evaluated

1Some interesting results for small values ofN were obtained in
Ref. @32#.
n-

the
-

er
s

exactly. As expected, it coincides with the one encounte
for particles obeying fractional statistics in one dimensi
@33#. Because of technical problems, the same strategy
for the spectral density and higher order spectral correla
functions.

For the special case ofN52, an explicit calculation of the
joint distribution of eigenvalues~2! coincides with the result
obtained by using zonal polynomials techniques@34#,

r~x1 ,x2!5
1

2p
e2(1/2)(x1

2
1x2

2)I 0S b

2
~x12x2!2D

3e2(b/2)(x12x2)2
ux12x2u, ~22!

whereI 0 is the Bessel function of imaginary argument.
In conclusion, we have expressed the joint distribution

the eigenvalues of our model in terms of zonal polynomi
but we have not succeeded to derive explicit expressions
the correlation functions.

III. CRITICAL SPECTRAL KERNEL
AND DENSITY-DENSITY CORRELATIONS

OF THE CS MODEL AT FINITE TEMPERATURE

We recall that the two level spectral function of our mod
is identical to the finite temperature density-density corre
tion function of the CS model~13! for l51. In Ref.@16# it
was conjectured that the low temperature limit,T!1, of the
connected density-density correlation function of the
model atl51 is given by

^r~x!r~0!&T2^r~x!&T^r~0!&T

5R2,c
T ~x,0!52K̄T

2~x,0!2S d

dx
K̄T~x,0! D E

x

`

K̄T~ t,0!,

~23!

where
4-4
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K̄T~x,0!5T
sin~px!

sinh~pxT!
~24!

is the kernel of the CS model~13! for l52. The temperature
T5ph/2 andh is related tot andv through Eqs.~17! and
~9!. This result is valid in a normalization such that the a
erage density of the particles is equal to unity.

The idea is that, based on the Luttinger liquid nature
the CS model@35#, the known relation between the densit
density correlation of the CS forl51 at zero temperature
and the spectral correlations of the GOE can be extende
finite low temperature. One simply replaces the kerne
zero temperature, which physically corresponds to free
mions for all invariant RME’s,2 by its finite temperature ana
log @2# given by

KT~x,y!5(
n

cn~x!cn
†~y!

11z2
21etEn

, ~25!

wherecn are the single particle wave functions for free fe
mions andEn5vn. The fugacityz2 for the free fermion
distribution in Eq.~25! is determined by the total number o
particles through,

N5E dxr~x!5 (
n50

`
1

11z2
21evtn

, ~26!

wherer(x)5KT(x,x) is the average spectral density. In th
low temperature limit,vt!1, we find

z2
21 5

1

etvN21
. ~27!

In Eq. ~9! the quantitiest and v have been related to th
parameterh of the matrix model~1!. In the largeN limit
these relations simplify to

vt;
1

hN
,

v;2hN, ~28!

and forh!1 the fugacity is given byz2; e1/h. To obtain the
average particle density forx→0 we can approximate th
single particle wave function by plane waves with ener
given byk2,

r~0!5
1

p
E

0

`

dk
1

11z2
21etk2 ;A2

NAh

p
. ~29!

The unfolded spectral kernel is thus given by

2For lÞ2 the particles obey exclusion statistics.
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K̄T~x,0!5
KT@x/r~0!,0#

r~0!
5AhE

0

` cos~pxAht!

2At

1

11z2
21t

dt.

~30!

In the low temperature limith!1, the above spectral kerne
coincides with Eq.~24! for T5ph/2.

The number variance of the eigenvalues near the cente
the band is obtained by integrating the two-point connec
correlation functionR2,c

T (s,0) including the self-correlations
~23!,

S2~L !5L12E
0

L/r(0)

ds~L2s!R2,c
T5ph/2~s,0!. ~31!

The number varianceS2(L) measures the stiffness of th
spectrum. The fluctuations are small for the GOE withS2(L)
proportional to ln(L) for L@1. For the Poisson ensembl
which is an ensemble of diagonal random matrices, the
genvalues are uncorrelated andS2(L)5L. For critical statis-
tics the number variance is asymptotically proportional
xL. For x!1 the slope has been connected with the mu
fractal dimensionD2 observed in the wave functions of
disordered system undergoing a localization-delocaliza
transition@36,37#,

x5
d2D2

2d
, ~32!

whered is the spatial dimension of the system to be studi
As observed in Fig. 1, the number variance of our mode
linear for L@1, with a slopex5h for h!1. This linear
behavior together with the absence of subleading logarith
terms3 in the asymptotic behavior of the number varian
suggests that our matrix model describes critical statistic

3We require the absence of a logarithmic term in the asympt
behavior of the number variance in order to distinguish critical s
tistics from the statistics obtained from the superposition of a P
son ensemble and Wigner-Dyson ensembles.

FIG. 1. The number varianceS2(L) ~31! versusL for h50.1,
h50.15, andh50.2. The linear behavior of the number variance
a signature of critical statistics. The slope forh!1 is x5h.
4-5
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IV. TESTING THE KRAVTSOV-TSVELIK CONJECTURE

Below we discuss two independent methods to test
Kravtsov-Tsvelik conjecture.

A. Conformal Calculation

We review first@35,16# how conformal techniques can b
utilized to calculate the low temperature large distan
asymptotic behavior of the two-point correlation function
the CS model.

Conformal field techniques@35,38–40# can be used to
compute the asymptotic behavior of the correlation functio
of 111 dimensional systems with a linear gapless spect
in the limit of largeN number of particles, constant densi
n5N/L, and low temperature.

In order to identify the conformal theory associated w
the low energy excitations of the 111 dimensional system
one needs the value of the conformal anomalyc of the asso-
ciated conformal field theory. Usually,c is obtained from the
leading low temperature behavior of the free energy of
system. Then, the conformal weights of the primary fields
the conformal theory must match the leading low ene
excitations of the 111 dimensional quantum system. Th
latter is usually evaluated either numerically or by finite s
scaling and Bethe ansatz techniques. This program was
ried out for the CS model by Kawakami and Yang@35#. They
found that the low energy collective excitations of the C
model are described by two quantum numbers:DN related to
excitations that change the number of particles andDD as-
sociated with excitations that move one particle from o
Fermi point to the other. The energyE and momentumP of
the leading finite size excitations of the CS model are giv
by

E5
2p

L

l

4
DD21

2p

L

l

4
DN21

2p~N11N2!

L
,

P52pDD1PL , ~33!

PL5
2p

L
@DNDD1N11N2#,

wherePL stands for the momentum of the finite size exci
tions andN1 and N2 label the conformal towers of state
~secondary fields! associated with each primary field. Finall
they argued, based on thermodynamics arguments, tha
conformal anomaly associated with the CS model isc51.

In a system with conformal symmetry, the eigenvalues
both the Hamiltonian and the momentum are related to
right ~left! conformal weightsxn,m ( x̄n,m) of the primary
fields through the following relation:

xn,m5
L

2p
@E1PL#,

~34!

x̄n,m5
L

2p
@E2PL#,
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where we assume thatE andPL depend on quantum numbe
n andm. Therefore, if we manage to find a conformal fie
theory withc51 and eigenvalues of the momentum opera
and energy operator given by Eq.~33!, the correlation func-
tions of the CS model in the asymptotic limit can be eas
evaluated by means of conformal techniques. It turns out
the simplest conformal model with such properties is a f
boson compactified on a circle with radiusR51/Al.

In general, observables do not have definite conform
dimensions and must be expressed as a linear combinatio
conformal excitations. Since such conformal fields only d
scribe the excitations close to the ground state one first ha
decompose the expansion of observables into ‘‘fast’’ a
‘‘slow’’ modes @41#. The ‘‘slow’’ modes are described by th
conformal fields and the ‘‘fast’’ ones correspond to mome
that remain finite in the thermodynamic limit, i.e., to excit
tions withDDÞ0. The density operator can be expanded

r~x!T5 (
m,n52`

`

cm,nei2pxncn,0,m~x!T , ~35!

where cn,0,m(x,0)T stands for the primary state (DD
5n,DN50) associated with the above conformal theory, t
phase in the expansion represents the momentum of
ground state forL→` ~fast mode! and the indexm accounts
for the contribution of secondary fields. Since the dens
operator does not change the number of particles only e
tations withDN50 contribute to the expansion. The coef
cientscm,n are found from the zero temperature limit~GOE!.

The density-density correlations at finite temperature
be easily obtained using the known result for the correlat
functions of the conformal fieldscn,0,m(x,0)T . The first
terms of the conformal prediction for the density-density c
relations of the CS model atl51 in the low temperature
limit are thus given by

R2
T~x,0!5^r~x!r~0!&T;

T2

sinh2~pxT!
2

T4

2

cos~2px!

sinh4~pxT!

2
3

2

T4

sinh4~pTx!
. . . . ~36!

With a temperature as given by the Kravtsov-Tsvelik conj
ture, i.e.,T5ph/2, the conformal result coincides with th
asymptotic expansion of the conjectured result~23!. Since
both results have been obtained by using completely dif
ent methods, this calculation supports the validity of the k
nel ~24! in the low temperature, long distance limit.

B. Susceptibility

The slope of the large distance asymptotic behavior of
number variance is determined by the isothermal suscept
ity of the CS model which can be obtained from the C
partition function. On the other hand, this slope is det
mined by an integral of the unfolded two-point cluster fun
tion Y2(r ) according to
4-6
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S2~^N&!;^N&S 12E
2`

`

Y2~r !dr D . ~37!

Therefore, agreement between the conformal calculation
the Kratsov-Tsvelik conjecture for the large distan
asymptotic behavior of the two-point correlation functio
does not necessarily imply that the asymptotic behavior
the number variance is given by the susceptibility.

The susceptibilityx in the grand canonical ensemb
which measures the fluctuations of the number of particle
a box of lengthL,

x5^N2&2^N&2, ~38!

can be expressed as

x5z1

d

dz1
^N&, ~39!

wherez1 stands for the fugacity and̂N& is the average num
ber of particles. Remarkably, the CS gas for arbitrary sta
tical couplingl can still be considered a free gas but w
exclusion statistics@33#. Indeed, Sutherland@19# has shown,
by using the Bethe ansatz and a method previously de
oped by Yang and Yang@42# for the Bose gas with a delt
interaction, that the occupation numbern(k) of a gas of CS
particles satisfies the following transcendental equation:

@12ln~k!/2#l/2@11~12l/2!n~k!#12l/25n~k!ete(k)/z1 .
~40!

For the special casel51, corresponding to the GOE, w
obtain

n~k!5
2

A11
4

z1
2

e2te(k)

, ~41!

where z1 is the fugacity for this distribution function an
e(k)5k2 is the energy of a single particle. To find the rel
tion between the fugacity and the parameterh in the Moshe-
Neuberger-Shapiro model forl51 we have to use the singl
particle energies corresponding to the CS model~12!. We
thus have

N5
1

p
E

2`

`

dxE
2`

`

dk
1

A11
4

z1
2

e2t(k211/4v2x2)

. ~42!

The asymptotic behavior for largez1 can be obtained easil
by changing to polar coordinates. This results in

N5
ln z1

2

vt
. ~43!

Using Eq.~9! we then find in the limit of smallh,
04610
nd
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z15e1/2h. ~44!

Since the density of particles isx dependent in a harmoni
box we calculate the susceptibility for particles in a recta
gular box with fugacity given by Eq.~44!. In this way the
susceptibility can be compared with the slope of the num
variance which is calculated in the center of the spectrum

The average number of particles in a box of lengthL is
given by

^N&5
L

pE2`

` dk

S 11
4

z1
2

e2tk2D 1/2. ~45!

If the fugacity is parametrized asz1
2[e2t k̄2

we have in the
low-temperature limit,

^N&52k̄
L

p
. ~46!

Then

x[^N2&2^N&25z1

d

dz1
^N&5

L

pE0

`

dk
8z1

22e2tk2

~114z1
22e2tk2

!3/2
.

After the change of variabledk5k2 k̄ and expanding around
the Fermi surface we find,

x5
L

pE2`

`

ddk
8e4t k̄dk

~114e4t k̄dk!3/2
5

^N&

2t k̄2
5

^N&
2 lnz1

5h^N&.

~47!

The above result should be compared with the calculation
the asymptotic behavior of the number variance from
two-point spectral correlation function,

x;S2~^N&! for ^N&→`, ~48!

whereS2(^N&) is defined by

S2~^N&!5^N2&2^N&25^N&22E
0

^N&
dr~^N&2r !Y2~r !.

~49!

Here,Y2(r ) is the unfolded two-point cluster function. Ac
cording to the Kravtsov-Tsvelik conjecture it is given by

Y2~r !5K2~r !1
dK~r !

dr E
r

`

K~r 8!dr8, ~50!

whereK(r ) is the kernel@see also Eq.~30!#

K~r !5
1

2pr̄
E

2`

`

dk
cos~kr/ r̄ !

11
1

z2
etk2

, ~51!

and r̄ is the average spectral density. For this cluster fu
tion, and, in fact any cluster function that decreases stron
4-7
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than 1/r , we recover the relation~37! for ^N&→`. With the
fugacity parametrized byz25et k̄2

5e1/h ~see Sec. III! we
have in the low-temperature limit

K~0![15
k̄

pr̄
. ~52!

After partial integration of the second term of Eq.~50! and
using thatK(0)51 we obtain,

S2~^N&!5^N&22^N&E
0

`

@2K2~r !2K~r !#dr1O~N0!.

~53!

Integrating by parts and making an expansion about
Fermi surfacek̄ results in

K~r !5
sink̄r / r̄

4pr E
2`

`

ds
cossr/2t k̄r̄

cosh2s/2

5
1

2k̄r̄t

sin~ k̄r / r̄ !

sinh~pr /2k̄r̄t !
. ~54!

The integral overr in Eq. ~54! can now be performed ana
lytically resulting in the susceptibility

x5
^N&

t k̄2
5

^N&
ln z2

5h^N&. ~55!

This slope is in agreement with the result obtained from
partition function of the CS model. In agreement with o
naive expectation, the value of the slope is a factor 2 lar
than the one found for the original Moshe-Neuberg
Shapiro model forl52 @2#.

In the kernel~51! the momentum integral is weighted b
the occupation number which in this case is the Fermi-Di
distribution. Since the occupation number of the CS mo
for l51 is given by Eq.~41!, it seems more natural to mak
this choice instead. This results in the kernel

K~x!5
1

pr̄
E

2`

`

dk
cos~2kx/ r̄ !

A11
4

z1
2

e2tk2

, ~56!

wherez15ek̄2t[e1/h8 is the fugacity. We choose the norma
ization of the kernel such thatK(0)51. Then the zero tem
perature limit (t→`) of this kernel is the usual sine-kerne
sinpx/px. Below we show that the conjecture~56! disagrees
with both the conformal calculation and the susceptibil
~47!.
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Let us first derive the largex asymptotic behavior of the
kernel~56!. In the low temperature limit the average numb
of particles is again given bŷN&52Lk̄/pr̄, with normal-
ization condition 2k̄/pr̄51. After partial integration the in-
tegral can be rewritten as

K~x!5
1

pxE0

`8tkz1
22e2tk2

sin~2kx/ r̄ !

~114z1
22e2tk2

!3/2
. ~57!

In the low temperature limit the integrand is strongly peak
at k' k̄, and the integral can be calculated by a steep
descent approximation

K~x!;Im
2

pxE2`

`

du
4e2ix( k̄1u/t k̄)/ r̄e4u

~114e4u!3/2

;
e23/2

3p
ImS p ix

t k̄
D 1/2

e2i k̄x/ r̄2pxk̄/2t2p ix(ln 4)/2t k̄.

~58!

This asymptotic result is in disagreement with the predict
from the conformal calculation.

Next we compare the asymptotic behavior of the num
variance with the susceptibility. The comparison of the s
ceptibility can again be made by computing the asymptot
behavior of the number variance. For an exponentially
creasing kernel we have previously shown that
asymptotic behavior of the number variance is given by

S2~^N&!5^N&22^N&E
0

`

@2K2~x!2K~x!#dx1O~^N&0!,

~59!

whereK(x) is the kernel~56! with average eigenvalue spac
ing normalized to unity. Using that

E
0

`sinpax

px
dx5

1

2
,

~60!

E
2`

`

ds
e4s

~114e4s!3/2
5

1

8
,

one easily shows that in the low temperature limit,

E
0

`

K~x!dx5
1

2
. ~61!

The other integral in Eq.~59! can be written as
E
0

`

K2~x!dx5E
0

`

dx
128

~px!2E2`

`

dyE
2`

y

dy8sinF S k̄1
y

t k̄
D 2x/ r̄GsinF S k̄1

y8

t k̄
D 2x/ r̄GG~y!G~y8!, ~62!
4-8
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where

G~y!5
e4y

~114e4y!3/2
. ~63!

The integral overx can be evaluated using the formula

E
0

`

dx
sin~ax!sin~bx!

x2
5

ap

2
for a,b. ~64!

This results in

E
0

`

K2~r !dr5
1

2
1128E

2`

`

dyE
2`

y

dy8
y8

pt k̄r̄
G~y!G~y8!.

~65!

The asymptotic behavior of the number variance is th
given by

S2~^N&!52512
^N&

pt k̄r̄
E

2`

`

dyE
2`

y

dy8y8G~y!G~y8!

5264
^N&

pt k̄r̄
E

2`

`

dy
ye4y

~114e4y!2

5
2^N&

pt k̄r̄
ln 2

5
^N&
ln z1

ln 2. ~66!

To obtain the expression after the second equality sign
have performed a partial integration using the identity

G~y!52
1

8

d

dy

1

A114e4y
. ~67!

This result for the susceptibility differs from the result o
tained from the thermodynamic properties of the CS gas.
conclude that the kernel~56! does not describe the correla
tions of the critical random matrix model~1!.

V. CRITICAL STATISTICS AND QUANTUM CHAOS

In this section we introduce the concept of multifrac
wave functions in the context of the Anderson transition a
show how it may be relevant in the study of determinis
quantum chaotic systems.

By now it has been well established that the appearanc
critical statistics at the Anderson transition is intimately
lated with the multifractal properties of the wave functio
@9,36,37,43#. We wish first to introduce intuitively the con
cept of multifractal wave functions@44#.

Let us consider the volume of the subset of a box
which the absolute value of the wave functionC is larger
than a fixed numberM. If this volume scales asLd* ~with
d* ,d), thend* is called the fractal dimensiond* ,d of C.
In case the fractal dimension depends on the value ofM, the
04610
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wave function is said to be multifractal. More formally, mu
tifractality is defined through the inverse participation rati

I p5(
r

^uCn~r !u2p&}L2Dp(p21), ~68!

whereCn is the wave function with energyEn , the sum runs
over the volume, andDp,d is a set of exponents characte
izing the anomalous~multifractal! scaling of the moments o
the wave function. We remark that, although confined
fractal subsets of the sample, wave functions of such syst
overlap strongly when their energies are close enough@43#.
Such strong overlap is responsible for the short-range le
repulsion observed at the Anderson transition. It is wor
while to note that this anomalous scaling has, in principle
pure quantum mechanical origin. As the density of impurit
increases, the de Broglie wavelength of the particles
comes comparable with the mean free path and localiza
effects start to be relevant. We stress that the classical
namics of the Anderson transition does not provide us w
valuable information to describe quantum spectral corre
tions. One may wonder to what extent such multifractal b
havior may be observed in deterministic quantum chao
systems.

What has become known as the Bohigas-Giannoni-Sch
conjecture@45# is that generically quantum spectra of clas
cally chaotic systems are correlated according to the Wign
Dyson random matrix ensembles, whereas spectral corr
tions of classically integrable systems are close to Pois
statistics. In most cases, by modifying the parameters of
system, a transition from integrable to chaotic dynamics
be observed. If the Kolmogorov-Arnold-Maser~KAM ! theo-
rem is applicable, this transition is smooth and both in
grable and chaotic regions coexist until the last KAM torus
completely destroyed. Although spectral statistics of su
mixed systems have been described in terms of banded
dom matrix models@46#, they are believed to be nongener
and different from critical statistics@47#.

The situation is different in cases where the KAM the
rem does not apply. In those systems, the invariant KA
curves may not exist at all and small changes in the coup
constant can produce qualitative modifications in the cla
cal phase space. The dynamics is, in general, intermed
between chaotic and integrable. The lack of KAM tori pe
mits a particle to explore the full available classical pha
space without having full chaotic motion. Such forms
phase space are also known as stochastic webs@48#. In cer-
tain cases, the classical phase space becomes increas
intricate, showing both self-similar and fractal properti
@48#. We notice that such a structure is reminiscent of
way that the KAM tori break up into ‘‘fractal’’ orbits of zero
dimension @49# ~cantori! as the system becomes chaot
Classically, cantori represent strong obstacles to phase s
transport. Our aim is to study the effect, if any, of such se
similar structure in the spectral correlations of the quant
counterpart. Roughly speaking, the influence of cantori
the quantum dynamics will depend on the relation betwe
the size of the cantori and Planck’s constant. For can
smaller than the Planck cell, quantum dynamics cannot
4-9
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solve the classical fine structure. In this case, cantori ac
perfect barriers to the quantum motion resembling the ef
of a classically integrable system and the spectral corr
tions of the quantum counterpart are close to Poisson st
tics. In the intermediate case the situation is less clear.
cently, it has been reported@50# that cantori drive spectra
correlations smoothly from Poisson to RME as the syst
approaches the ergodic regime.

Below, we present numerical evidence that deviatio
from GOE statistics caused by the self-similar structure
the classical phase space may be described by critical s
tics at least while the deviations from GOE are small.

A. The anisotropic Kepler problem

The anisotropic Kepler Hamiltonian

H5
1

2
pr

21
1

2
gpz

22
1

r
~69!

is an interesting example of a non-KAM system undergo
an abrupt chaotic integrable transition. It has been utilized
a model of donor impurities in a semiconductor@51,52#.
Even for small departures from the integrable case,g51,
the classical phase space is densely filled with remnant
cantori@53#. Gutzwiller has shown that forg,8/9 the orbits
in phase space can be uniquely represented in terms of
bolic dynamics. Such representation is a signature of h
chaos. Indeed, forg,1/2 there are no islands of stability i
phase space. Furthermore, the measure of the surface o
tion based on the symbolic dynamics is multifractal w
respect to the usual Liouville measure. Since the perio
orbits can be effectively enumerated, the energy levels of
quantum counterpart can be approximately evaluated
means of analytical techniques@54#.

A numerical study of the spectral correlations of high
excited states of this system was carried out in Ref.@53#. In

FIG. 2. The spectral rigidityD3 @58# of the anisotropic Kepler
problem obtained in Ref.@53# versus the prediction of our model fo
h50.16 obtained from Eq.~30!. Both curves are barely distinguish
able. The numerical data are reprinted from Fig. 2 in Ref.@53#.
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a basis in which the Hamiltonian has a band structure, t
succeeded to obtain up to 5500 energy levels. In Fig. 2
show their result for the spectral rigidity of the spectru
from level 2501 to 5500. As observed, the deviations fro
the GOE are very well described by the critical random m
trix model ~1!. Based on the analogy with disordered sy
tems, we conjecture that the wavefunctions of this system
multifractal. We are not aware of numerical results that c
confirm or disprove this conjecture.

B. Kicked particle in a infinite potential well

Recently, in Ref.@55#, another non-KAM system with
similar properties, a kicked particle in a infinite potenti
well, was studied both quantum mechanically and classica
The Hamiltonian is given by

H5
p2

2
1V~x!1k cos~x11! (

n52`

1`

d~ t2nT!, ~70!

whereV(x) is an infinite well potential of lengthp, T is the
period of the kick, andk the strength. Concerning the cla
sical motion, the KAM theorem is not applicable because
potential is not smooth. Indeed, it was found@55# that the
classical phase space resembles a stochastic web with a
similar structure. This is in contrast to the standard kick
rotor where the classical phase space is a mixture of cha
and integrable parts separated by KAM tori.

The quantum mechanical properties of the model

described by the evolution operator Û

5e2 i p̂2T/4ek cos(x11)e2ip̂2T/4 over a periodT of the kick. The
quasienergies associated with this operator were obtaine
Ref. @55# by diagonalizingÛ in a basis of 1024 eigenstate
of the free Hamiltonian̂qun&5A2/psin(nq).

Unlike the kicked rotor where the matrix evolution has
exponential decay in a basis of plane waves, it can be sh
that the matrix elements ofÛ are well described by a random
banded matrix with powerlike decay,u^muÛum1n&u}b2/n2

for b!n and constant forb@n whereb;K5kT is the size
of the band.

In agreement with the results of Ref.@3#, the nearest
neighbor distribution reported in Ref.@55# smoothly interpo-
lates between Poisson and GOE asK is increased. Recently
an experimental realization of this model was studied in R
@56#.

C. Analysis of results

In Figs. 3 and 4, we show the number variance and theD3
statistic~see Ref.@57# for a discussion of this statistic! of the
sequence of 1024 eigenvalues obtained in Ref.@55# for kT
550. The upper curve is the analytical result derived fro
the two-point correlation function~23! with kernel ~30!. In
both cases the numerical result is plotted with its error~see
below!.
4-10
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For theD3 statistic, thex2 is minimized on the interva
@0,30# for h50.2122 with a value4 of x250.32. The errors
in the definition ofx2 have been calculated by splitting th
1024 eigenvalues into eight ensembles of 128 eigenva
and evaluating the number variance for each ensemble s
rately ~denoted byS i

2(L),i 51, . . .,8). The error in the
number variance is thus given by

s~L !5
1

A8
F1

8 (
i 51

8

@S i
2~L !2Smean

2 ~L !#2G1/2

,

where Smean~L !5
1

8 (
i 51

8

S i
2~L !. ~71!

The error in theD3 statistic is obtained from this error b
means of a Monte Carlo simulation using the relation
tween D3(L) and S2(L) @58#. As observed in Fig. 4, the
error in D3(L) is much smaller than the error inS2(L).

Next we ask the question whether the asymptotic beha
of the spectral rigidity is linear without a logarithmic corre
tion, just as in the analytical case. If a logarithmic correct
is absent, one can almost discard the possibility of a mi

4Here and below we find values ofx2 that are significantly less
than 1. This is possible because the values ofD3(L) for different
values ofL are correlated. Therefore, our values ofx2 have to be
used with care and cannot be interpreted in terms of ax2 distribu-
tion.

FIG. 3. The number varianceS2(L) of the quasienergy levels o
a kicked particle in an infinite potential well atK5kT550 @55# is
compared with the prediction of the critical GOE~31! for h
50.2122~upper curve!. Fair agreement is observed up to ten eige
values. The downward tendency of the numerical result may be
to finite size effects. The error in the numerical results is indica
by the thickness of the curve. 1024 energy levels to compute
number variance were taken from Ref.@55#.
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classical phase space as the reason of the observed dev
from the GOE. In order to prove the absence of such term
fit the numerical curveD3(L)num to D3(L)fit5a1bL
1c ln L. For instance, on an interval@15,29# a best fit is
obtained for a50.11060.004, b50.015660.0001, c
50.00260.002 with a value ofx250.015. We find that the
value of the coefficientc is compatible with zero. This sug
gests that the classical phase space is not a mixture of ch
and integrable regions.

In the case of the number variance, because of the siz
the error, no conclusive evidence on the absence of the lo
rithmic term can be obtained from such fit. At large distanc
the number variance seems to deviate from a linear beha
by a quadratic term. Although such terms are typica
caused by finite size effects, we do not have a clear un
standing of its origin. Since theD3 statistic projects out a
quadratic dependence of the number variance, the linear
havior persists to much larger distances in this case~see Fig.
4!.

Finally, let us confront the conjecture~23! with our
present numerical results. As we mentioned previously
may look reasonable to replace the kernel~30! by Eq.~56!. It
can be shown that the spectral rigidity obtained from
kernel~56! is almost indistinguishable from the one obtain
from Eq. ~30! and therefore the agreement with the nume
cal result is expected to be equally good with one fitti
parameter at our disposal. However, a more careful anal
shows that the kernel~56! leads to a value ofx2 much higher
than the one obtained from Eq.~30!. For the interval@0,30#,
using the kernels~30! and ~56!, a best fit is obtained forh
50.2122 with a value ofxFermi

2 50.32 and forh850.325

-
ue
d
e

FIG. 4. The spectral rigidityD3(L) obtained in Ref.@55# for the
energy levels of a kicked particle in an infinite potential well atK
5kT550 is accurately described by the critical kernel~30! at h
50.2122~upper curve!. The error in the numerical results is ind
cated by the thickness of the curve.
4-11
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with a value ofxSqrt
2 52.27, respectively.

The above findings suggest that a self-similar class
phase space dominated by cantori has a strong impact o
quantum spectral correlations. Critical statistics appears
the leading candidate to describe such correlations and,
sequently, enlarge the range of applicability of random m
trix ensembles.

Finally, we list other quantum systems between integra
and chaotic whose quantum spectral correlations sho
similarity with critical statistics: quantum billiards with
point scatterer@59,60#, the Kepler billiard @17,61,62#, and
semiconductor billiards@63,64#, the stadium billiard inside
certain range of parameters@65#. For applications concerning
pseudointegrable billiards we refer to Ref.@17#.

VI. CONCLUSIONS

In this paper we have introduced a one parameter
semble of symmetric random matrices. This ensemble in
polates between the Gaussian orthogonal ensemble an
Poisson ensemble and is capable of describing critical st
tics.

We have shown that, in an eigenvalue basis, the jo
eigenvalue distribution of our model coincides with the
agonal density matrix of the CS model at finite temperat
where the additional parameter of the matrix model plays
role of temperature. Remarkably, this equivalence can be
tended to all random matrix ensembles associated with
large families of symmetric spaces according to the Ca
classification, thus providing an important link betwe
strongly interacting quantum systems and random ma
theory.

We have calculated the spectral correlation functio
based on a recent conjecture by Kravtsov and Tsvelik for
correlation functions of the CS model in the low temperat
.
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limit. We have tested the validity of this conjecture by tw
independent methods: one based on the effective confo
symmetry of the CS model in the low temperature limit a
the other based on the thermodynamical properties of a
of particles governed by the CS Hamiltonian. We have fou
that both the long distance low temperature behavior of
two-point correlation function obtained from the conform
calculation and the susceptibility of the CS model agree w
the conjecture made by Kravtsov and Tsvelik.

Based on the Kravtsov-Tsvelik conjecture we find th
although level repulsion is still present, the number varian
is asymptotically linear with a slope less than 1 and no s
leading logarithmic term present. This indicates that our r
dom matrix model describes critical statistics.

Finally, we have argued that critical statistics is releva
to describe spectral correlations of chaotic quantum syst
for which the Poincare´ section of the classical counterpart
globally self-similar or fractal. Two examples with such cla
sical phase space, a kicked particle in a potential well and
anisotropic Kepler problem, have been discussed in detai
both cases, long range spectral correlators such as the n
ber variance and theD3 statistic are accurately described b
our analytical results based on the Kravtsov-Tsvelik conj
ture. Indeed, for the kicked particle, we have shown that
spectral rigidity is asymptotically linear with no subleadin
logarithmic term present. This may be an indication that
wave functions of this model show multifractal properties
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